Identification of Genetic Changes in Individuals Diagnosed with Autism Spectrum Disorder Using Classical Cytogenetic and FMR1 Sizing PCR Methods

Autism and Genetic

Authors

DOI:

https://doi.org/10.5281/zenodo.17507229

Keywords:

Autism Spectrum Disorder, Chromosome Aberrations, DNA Fragmentation

Abstract

Objective: To investigate the role of chromosomal abnormalities and FMR1 gene variations in the etiology of Autism Spectrum Disorder (ASD).

Methods: This clinical study included 80 patients who were referred to the Medical Genetics Department. Chromosome analyses and FMR1 fragment analysis methods were performed on DNA samples of these patients to detect any variations. The obtained data were compared with the literature data.

Results: Eighty individuals were selected for this clinical study. In three patients, chromosomal abnormalities were found. No FMR1 gene defects were found in any of the patients.

Conclusion: Chromosomal abnormalities were found in 3.75% of the patient population. This is compatible with the literature data. The FMR1 gene was not found to be associated with etiology. According to these data, it is seen that chromosome analysis still has a valid place in explaining the genetic etiology of autism spectrum disorder.

References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabi-lities Monitoring Network, 11 sites, United States, 2014. MMWR Surveillance Summ. 2018;67(6):1-23.

Meguid NA, Eid MM, Mohamed AM, Ghanoum H, Helmy NA, Eid OM. Contribution of chromosomal abnormalities at 10q and 22q to autism. Res Autism Spectr Disord. 2018;50:43-50.

Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder—current evidence in the field. J Appl Genet. 2019;60(1):37-47.

Lord C, Shulman C, DiLavore P. Regression and word loss in autistic spectrum disorders. J Child Psychol Psychiatry. 2004;45(5):936-955.

El-Baz F, Zaghloul MS, El Sobky E, Elhossiny RM, Salah H, Abdelaziz NE. Chromosomal abnormalities and autism. Egypt J Med Hum Genet. 2016;17(1):57-62.

Elsabbagh M, Divan G, Koh YJ, et al. Global prevalence of autism and other pervasive de-velopmental disorders. Autism Res. 2012;5(3):160-179. doi:10.1002/aur.239

Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum di-sorder. Nat Rev Dis Primers. 2020;6(1):5. doi:10.1038/s41572-019-0138-4

Liu X, Takumi T. Genomic and genetic aspects of autism spectrum disorder. Biochem Bi-ophys Res Commun. 2014;452(2):244-253. doi:10.1016/j.bbrc.2014.08.108

Devlin B, Scherer SW. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev. 2012;22(3):229-237. doi:10.1016/j.gde.2012.03.002

Meyyazhagan A, Balasubramanian B, Bhotla HK, Easwaran M, Shanmugam S, Alagamuthu KK, Pappusamy M. Genetic and cytogenetic screening of autistic spectrum disorder: Ge-notype-phenotype profiles. Meta Gene. 2021;29:100924. doi:10.1016/j.mgene.2021.100924

Hogart A, Wu D, LaSalle JM, Schanen NC. The comorbidity of autism with the genomic di-sorders of chromosome 15q11.2-q13. Neurobiol Dis. 2010;38(2):181-191. doi:10.1016/j.nbd.2010.01.001

Toronto Centre for Applied Genomics. Autism Database. Available at: http://projects.tcag.ca/autism/. Accessed [insert access date].

Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in in-dividuals ascertained for diagnosis of autism spectrum disorder. J Med Genet. 2010;47(3):195-203. doi:10.1136/jmg.2009.069369

Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment inte-ractions. Dialogues Clin Neurosci. 2012;14(3):281-292. doi:10.31887/DCNS.2012.14.3.PC

Selvi R, Vineeta N, Solomon F, Paul D. Cytogenetics of autism. Sri Ramachandra J Med. 2010;3(2):5-8.

Xu J, Zwaigenbaum L, Szatmari P, Scherer SW. Molecular cytogenetics of autism. Curr Ge-nomics. 2004;5(4):347-356. doi:10.2174/1389202043349246

Reddy KS. Cytogenetic abnormalities and fragile X syndrome in autism spectrum disorder. BMC Med Genet. 2005;6(1):3. doi:10.1186/1471-2350-6-3

Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, Hillman RE, Farmer JE. Essential versus complex autism: Definition of fundamental prognostic subtypes. Am J Med Genet A. 2005;135A(2):171-180. doi:10.1002/ajmg.a.30712

Medne L, Russell K, Ming J, Krantz I, Souders M, Levy S, Morrissette J. Subtelomeric FISH analysis in 108 autistic patients as an adjunct to chromosome analysis and fragile X testing. Am J Hum Genet. 2003;73(Suppl):Abstract 259.

Çöp E, Yurtbaşi P, Öner Ö, Münir KM. Genetic testing in children with autism spectrum di-sorders. Anadolu Psikiyatri Derg. 2015;16(6):426-432.

Shimokawa O, Kurosawa K, Ida T, Harada N, Kondoh T, Miyake N, Niikawa N. Molecular characterization of inv dup del (8p): analysis of five cases. Am J Med Genet A. 2004;128A(2):133-137. doi:10.1002/ajmg.a.30043

García-Santiago FA, Martínez-Glez V, Santos F, García-Miñaur S, Mansilla E, Meneses AG, et al. Analysis of invdupdel(8p) rearrangement: clinical, cytogenetic and molecular characte-rization. Am J Med Genet A. 2015;167A(5):1018-1025. doi:10.1002/ajmg.a.36850

Nucaro A, Pisano T, Chillotti I, Montaldo C, Pruna D. Chromosome 8p23.2-pter: a critical region for mental retardation, autism and epilepsy? Clin Genet. 2011;79(4):394-395. doi:10.1111/j.1399-0004.2010.01623.x

Guo WJ, Callif-Daley F, Zapata MC, Miller ME. Clinical and cytogenetic findings in se-ven cases of inverted duplication of 8p with evidence of a telomeric deletion using fluorescence in situ hybridization. Am J Med Genet. 1995;58(3):230-236. doi:10.1002/ajmg.1320580307

Fisch GS, Davis R, Youngblom J, Gregg J. Genotype-phenotype association studies of chromosome 8p inverted duplication deletion syndrome. Behav Genet. 2011;41(3):373-380. doi:10.1007/s10519-011-9447-4

Glancy A, Barnicoat A, Vijeratnam R, de Souza S, Gilmore J, Huang S, et al. Transmitted duplication of 8p23.1–8p23.2 associated with speech delay, autism, and learning difficulties. Eur J Hum Genet. 2009;17(1):37-43. doi:10.1038/ejhg.2008.133

Hand M, Gray C, Glew G, Tsuchiya KD. Mild phenotype in a patient with mosaic del(8p)/inv dup del(8p). Am J Med Genet A. 2010;152A(11):2827-2831. doi:10.1002/ajmg.a.33673

Guo WJ, Callif-Daley F, Zapata MC, Miller ME. Clinical and cytogenetic findings in seven cases of inverted duplication of 8p with evidence of a telomeric deletion using fluorescence in situ hybridization. Am J Med Genet. 1995;58(3):230-236. doi:10.1002/ajmg.1320580303

Bhat SS, Ladd S, Grass F, Spence JE, Brasington CK, Simensen RJ, et al. Disruption of the IL1RAPL1 gene associated with a pericentromeric inversion of the X chromosome in a pati-ent with mental retardation and autism. Clin Genet. 2008;73(1):94-96. doi:10.1111/j.1399-0004.2007.00930.x

Noor A, Whibley A, Marshall CR, Gianakopoulos PJ, Piton A, Carson AR, et al. Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Sci Transl Med. 2010;2(49):49ra68. doi:10.1126/scitranslmed.3001267

Filges I, Röthlisberger B, Blattner A, Boesch N, Demougin P, Wenzel F, et al. Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability and autism spect-rum disorder. Am J Med Genet A. 2011;155A(11):2802-2813. doi:10.1002/ajmg.a.34278

Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368-372. doi:10.1038/nature09146

Butler MG, Rafi SK, Hossain W, Stephan DA, Manzardo AM. Whole exome sequencing in females with autism implicates novel and candidate genes. Int J Mol Sci. 2015;16(1):1312-1335. doi:10.3390/ijms16011312

Rafi SK, Fernández-Jaén A, Álvarez S, Nadeau OW, Butler MG. High-functioning autism with missense mutations in synaptotagmin-like protein 4 (SYTL4) and transmembrane pro-tein 187 (TMEM187) genes: SYTL4-protein modeling, protein-protein interaction, expres-sion profiling, and microRNA studies. Int J Mol Sci. 2019;20(13):3358. doi:10.3390/ijms20133358

Dronca E, Militaru MS, Ciumărnean L, Pop IV. Cytogenetic and fragile X testing in a group of Romanian autistic children. Hum Vet Med. 2015;7(4):276-282.

Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, et al. Widespread RNA editing dysregulation in brains from autism spectrum disorder patients. Nat Neurosci. 2019;22(1):25-36. doi:10.1038/s41593-018-0287-0

Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, et al. Autism profi-les of males with fragile X syndrome. Am J Ment Retard. 2008;113(6):427-438. doi:10.1352/2008.113:427-438

Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113(5):e472-e486. doi:10.1542/peds.113.5.e472

Downloads

Published

2025-11-19

How to Cite

Gürler, A. İhsan, Gümüş, U., Artan, S., & Erzurumluoğlu Gökalp, E. (2025). Identification of Genetic Changes in Individuals Diagnosed with Autism Spectrum Disorder Using Classical Cytogenetic and FMR1 Sizing PCR Methods : Autism and Genetic. Avicenna Anatolian Journal of Medicine, 2(2), 25–30. https://doi.org/10.5281/zenodo.17507229

Issue

Section

Original Article

Categories