Matrix Metalloproteinase-8 and Cardiovascular Diseases: A Narrative Review

Matrix Metalloproteinase-8 and CVD

Authors

DOI:

https://doi.org/10.5281/zenodo.14568908

Keywords:

Atherosclerosis, Cardiovascular diseases, Matrix metalloproteinases-8

Abstract

Matrix metalloproteinases-8 (MMP-8), commonly known as neutrophil collagenase, is an MMP enzyme. MMPs break down extracellular matrix components, which support tissues. Skin, bones, and blood vessels contain collagen, which MMP-8 degrades. Researchers have linked higher MMP-8 levels to atherosclerosis, heart attacks, and heart failure (HF). MMP-8 damages the extracellular matrix in heart tissue and blood vessels, which can worsen cardiovascular diseases (CVDs) by altering the shape of artery walls, destabilizing plaques, and changing the shape of ventricles. MMP-8 breaks down collagen in the fibrous cap of atherosclerotic plaques, weakening it and increasing the likelihood of plaque rupture, which may lead to a heart attack or stroke. MMP-8 activity accelerates ventricular remodeling in heart failure, impairing cardiac function. MMP-8's role in CVDs is complex. Certain research suggests that MMP-8 may assist in the repair of injured tissue. How MMP-8 activity impacts CVDs overall depends on the efficiency of MMP-8 and its tissue inhibitors, or TIMPs, working together. MMP-8 inhibitors may reduce matrix breakdown and tissue damage in CVDs. MMP-8's importance in CVDs and its therapeutic potential requires further investigation. A trained healthcare professional should diagnose and treat CVDs and other medical conditions.

References

Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm. 2013;2013:659282. doi:10.1155/2013/659282Ye S. Putative targeting of matrix metalloproteinase-8 in atherosclerosis. Pharmacol Ther 2015;147:111-22.

Ye S. Putative targeting of matrix metalloproteinase-8 in atherosclerosis. Pharmacol Ther. 2015;147:111-122. doi:10.1016/j.pharmthera.2014.11.007

Wilson WR, Schwalbe EC, Jones JL, Bell PR, Thompson MM. Matrix metalloproteinase 8 (neutrophil collagenase) in the pathogenesis of abdominal aortic aneurysm. Br J Surg. 2005;92(7):828-833. doi:10.1002/bjs.4993

Turu MM, Krupinski J, Catena E, et al. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound. Atherosclerosis. 2006;187(1):161-169. doi:10.1016/j.atherosclerosis.2005.08.039

Magyar MT, Szikszai Z, Balla J, et al. Early-onset carotid atherosclerosis is associated with increased intima-media thickness and elevated serum levels of inflammatory markers. Stroke. 2003;34(1):58-63. doi:10.1161/01.str.0000048845.83285.ac

Raitio A, Tuomas H, Kokkonen N, et al. Levels of matrix metalloproteinase-2, -9 and -8 in the skin, serum and saliva of smokers and non-smokers. Arch Dermatol Res. 2005;297(6):242-248. doi:10.1007/s00403-005-0597-1

Desvarieux M, Demmer RT, Rundek T, et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation. 2005;111(5):576-582. doi:10.1161/01.CIR.0000154582.37101.15

Tuomainen AM, Nyyssönen K, Laukkanen JA, et al. Serum matrix metalloproteinase-8 concentrations are associated with cardiovascular outcome in men. Arterioscler Thromb Vasc Biol. 2007;27(12):2722-2728. doi:10.1161/ATVBAHA.107.154831

Kato R, Momiyama Y, Ohmori R, Taniguchi H, Nakamura H, Ohsuzu F. Plasma matrix metalloproteinase-8 concentrations are associated with the presence and severity of coronary artery disease. Circ J. 2005;69(9):1035-1040. doi:10.1253/circj.69.1035

Kato R, Momiyama Y, Ohmori R, Taniguchi H, Nakamura H, Ohsuzu F. Levels of matrix metalloproteinase-1 in patients with and without coronary artery disease and relation to complex and noncomplex coronary plaques. Am J Cardiol. 2005;95(1):90-92. doi:10.1016/j.amjcard.2004.08.066

Lim SY, Jeong MH, Bae EH, et al. Predictive factors of major adverse cardiac events in acute myocardial infarction patients complicated by cardiogenic shock undergoing primary percutaneous coronary intervention. Circ J. 2005;69(2):154-158. doi:10.1253/circj.69.154

Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003;168(2):263-269. doi:10.1016/s0021-9150(03)00140-0

Pullamsetti S, Krick S, Yilmaz H, et al. Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration. Respir Res. 2005;6(1):128. Published 2005 Nov 1. doi:10.1186/1465-9921-6-128

Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol. 2012;3:119. Published 2012 Jul 19. doi:10.3389/fphar.2012.00119

Rosenberg M, Meyer FJ, Gruenig E, et al. Osteopontin predicts adverse right ventricular remodelling and dysfunction in pulmonary hypertension. Eur J Clin Invest. 2012;42(9):933-942. doi:10.1111/j.1365-2362.2012.02671.x

Mura M, Cecchini MJ, Joseph M, Granton JT. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology. 2019;24(11):1104-1110. doi:10.1111/resp.13557

Saker M, Lipskaia L, Marcos E, et al. Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36(9):1879-1890. doi:10.1161/ATVBAHA.116.307839

Anwar A, Li M, Frid MG, et al. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;303(1):L1-L11. doi:10.1152/ajplung.00050.2012

Kumar R, Mickael C, Kassa B, et al. TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun. 2017;8:15494. Published 2017 May 30. doi:10.1038/ncomms15494

Kaiser R, Frantz C, Bals R, Wilkens H. The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension. Respir Res. 2016;17(1):96. Published 2016 Jul 30. doi:10.1186/s12931-016-0412-x

Rogers NM, Yao M, Sembrat J, et al. Cellular, pharmacological, and biophysical evaluation of explanted lungs from a patient with sickle cell disease and severe pulmonary arterial hypertension. Pulm Circ. 2013;3(4):936-951. doi:10.1086/674754

Rogers NM, Sharifi-Sanjani M, Yao M, et al. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc Res. 2017;113(1):15-29. doi:10.1093/cvr/cvw218

Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res. 2017;113(8):858-868. doi:10.1093/cvr/cvx094

Das A, Monteiro M, Barai A, Kumar S, Sen S. MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Sci Rep. 2017;7(1):14219. Published 2017 Oct 27. doi:10.1038/s41598-017-14340-w

Jung KK, Liu XW, Chirco R, Fridman R, Kim HR. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J. 2006;25(17):3934-3942. doi:10.1038/sj.emboj.7601281

Ando T, Charindra D, Shrestha M, et al. Tissue inhibitor of metalloproteinase-1 promotes cell proliferation through YAP/TAZ activation in cancer. Oncogene. 2018;37(2):263-270. doi:10.1038/onc.2017.321

Pellinen T, Rantala JK, Arjonen A, Mpindi JP, Kallioniemi O, Ivaska J. A functional genetic screen reveals new regulators of β1-integrin activity. J Cell Sci. 2012;125(Pt 3):649-661. doi:10.1242/jcs.090704

Nardone G, Oliver-De La Cruz J, Vrbsky J, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321. Published 2017 May 15. doi:10.1038/ncomms15321

Varadarajulu J, Laser M, Hupp M, Wu R, Hauck CR. Targeting of alpha(v) integrins interferes with FAK activation and smooth muscle cell migration and invasion. Biochem Biophys Res Commun. 2005;331(2):404-412. doi:10.1016/j.bbrc.2005.03.175

Ron A, Azeloglu EU, Calizo RC, et al. Cell shape information is transduced through tension-independent mechanisms. Nat Commun. 2017;8(1):2145. Published 2017 Dec 15. doi:10.1038/s41467-017-02218-4

Jia Y, Guo D, Zhang K, et al. Causal associations of serum matrix metalloproteinase-8 level with ischaemic stroke and ischaemic stroke subtypes: a Mendelian randomization study. Eur J Neurol. 2021;28(8):2543-2551. doi:10.1111/ene.14878

Dieffenbach PB, Mallarino Haeger C, Rehman R, et al. A Novel Protective Role for Matrix Metalloproteinase-8 in the Pulmonary Vasculature. Am J Respir Crit Care Med. 2021;204(12):1433-1451. doi:10.1164/rccm.202108-1863OC

Cuadrado E, Rosell A, Penalba A, et al. Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study. J Proteome Res. 2009;8(6):3191-3197. doi:10.1021/pr801012x

Lorenzl S, De Pasquale G, Segal AZ, Beal MF. Dysregulation of the levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the early phase of cerebral ischemia. Stroke. 2003;34(6):e37-e38. doi:10.1161/01.STR.0000075563.45920.24

Wu W, Peng S, Shi Y, Li L, Song Z, Lin S. NPY promotes macrophage migration by upregulating matrix metalloproteinase-8 expression. J Cell Physiol. 2021;236(3):1903-1912. doi:10.1002/jcp.29973

Iwańczyk S, Lehmann T, Grygier M, Woźniak P, Lesiak M, Araszkiewicz A. Serum matrix metalloproteinase 8 level in patients with coronary artery abnormal dilatation. Pol Arch Intern Med. 2022;132(5):16241. doi:10.20452/pamw.16241

Zhang C, Niu K, Ren M, et al. Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells. 2022;11(20):3218. Published 2022 Oct 14. doi:10.3390/cells11203218

Maghajothi S, Subramanian L, Mani P, et al. A common Matrix metalloproteinase 8 promoter haplotype enhances the risk for hypertension via diminished interactions with nuclear factor kappa B. J Hypertens. 2022;40(11):2147-2160. doi:10.1097/HJH.0000000000003234

Cárcel-Márquez J, Cullell N, Muiño E, et al. Causal Effect of MMP-1 (Matrix Metalloproteinase-1), MMP-8, and MMP-12 Levels on Ischemic Stroke: A Mendelian Randomization Study. Stroke. 2021;52(7):e316-e320. doi:10.1161/STROKEAHA.120.033041

Yang F, Chen Q, Yang M, et al. Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia. Cardiovasc Res. 2020;116(1):211-225. doi:10.1093/cvr/cvz044

Mitruţ R, Stepan AE, Mărgăritescu C, et al. Immunoexpression of MMP-8, MMP-9 and TIMP-2 in dilated cardiomyopathy. Rom J Morphol Embryol. 2019;60(1):119-124.

Hashimoto M, Kuriiwa S, Kojima A, et al. Aortic rupture involving matrix metalloproteinases 8 and 9 during Staphylococcus aureus pneumonia. Thorax. 2018;73(4):397-398. doi:10.1136/thoraxjnl-2017-210784

Downloads

Published

2025-01-02

How to Cite

Aşkın, L., Aşkın, H. Şengül, & Tanrıverdi, O. (2025). Matrix Metalloproteinase-8 and Cardiovascular Diseases: A Narrative Review: Matrix Metalloproteinase-8 and CVD. Avicenna Anatolian Journal of Medicine, 1(1), 11–16. https://doi.org/10.5281/zenodo.14568908